产品机器的哺喂与进化

柴象飞的博士后导师、斯坦福大学医学物理部主任、终身教授邢磊,是汇医慧影首席顾问科学家,通过产学研转化加速团队产出,他本人也成为汇医慧影吸引人才的一块金字招牌。

斯坦福大学放射组学在全球排名第一。放射组学采用大数据维度的分析方法和手段,融入患者的影像信息、临床信息等,做出量化诊断。

邢磊一直希望将他实验室的科研成果应用于临床,他和柴象飞对放射组学进行了产品定义和设计。左盼莉加入后,接手了放射组学的产品化落地,经过4个多月的打磨,放射组学云平台于2017年5月正式上线,目前已经对接了七八百家医院。

左盼莉所属的团队负责图像处理,做图像前处理和后处理,简单地说,前者就是把图像处理成机器能明白的东西,“喂”给机器学习,后者是把机器”吐”出来的东西经过加工,让人看得明白。

汇医慧影的算法团队除了图像处理以外,还有专做深度学习、专做大数据分析的。

“肺结节病灶的形态、分类有限,但肺部疾病是复杂的。”汇医慧影首席算法工程师顾一驰说。

算法训练的主要难点是对肺部小结节的识别。结节大到30毫米,小到1毫米。随着结节减小,机器识别率也随之降低。机器对大结节的检出率能达到90%,小结节只有80%。一般来说,医生识别率都在90%以上。对不同大小的结节达到同样高的检出率,这是深度学习方法的一个难点。

算法主要基于病灶的统计分析,采用Unet神经网络和条件随机场模型,通过深度学习的卷积神经网络来实现。

例如肺结节的肺部CT数据,一个3D的数据,大小在512×512×(100-400)。对这样一个大的数据,首要进行数据的预处理,预处理包括分辨率、图像噪声的归一化以及图像整体识别,比如识别肺部心脏气管的位置。

之后把训练好的AI模型,运用到预处理之后的图像中,判别这个图像中有没有结节,如果有的话机器会把位置标注出来。

根据医院提供的CT样本数据,结节大小不同,诊断准确率略有不同,目前汇医慧影在肺结节上的准确率最高可达到95%以上,敏感性接近95%,3mm的肺结节检出率可达到85%。

在使用过程中,大约有50%-60%的医生会参与修改,这又反哺机器,使其变得更“聪明”,下次输出的结果更精准。

柴象飞称,使用汇医慧影的AI辅助诊断,能提升40%的阅片效率。

除了准确率以外,顾一驰还希望能够提升输出速度。

作为汇医慧影重点开发的产品,骨折影像的检测方法采用目标检测,肺结节采用图像分割。

图像分割是像素级分割,给图像多种定义,检测出多种物体,每个物体都编上号,比如把结节部分编为1,把非结节部分编成0,整个CT图像分割成0和1的图像矩阵。

目标检测是在立体的图像中,选出结节所在的位置,用一个立方体的方块来代表它,比如它的横坐标是200-210,纵坐标是100-120,Z轴是50-60。目标检测就是要找到这个病灶所在的立方块,用几个像素标识它。所以目标检测和图像分割相比,简化了输出结果,计算复杂度大大降低。

AI算法组还将整合多种医疗数据,研发肺部CT的智能辅助诊断系统,包括肺癌诊断、多种肺部疾病检测,实现强监督和弱监督学习的融合,传统机器学习和深度学习的融合,提高智能检测准确率。

  

联系方式

13544009511

粤公网安备 44030502004801号